GRADED BETTI NUMBERS AND h-VECTORS OF LEVEL MODULES
نویسنده
چکیده
Abstract. We study h-vectors and graded Betti numbers of level modules up to multiplication by a rational number. Assuming a conjecture on the possible graded Betti numbers of Cohen-Macaulaymodules we get a description of the possible h-vectors of level modules up to multiplication by a rational number. We also determine, again up to multiplication by a rational number, the cancellable h-vectors and the h-vectors of level modules with the weak Lefschetz property. Furthermore, we prove that level modules of codimension three satisfy the upper bound of the Multiplicity conjecture of Herzog, Huneke and Srinivasan, and that the lower bound holds if the module, in addition, has the weak Lefschetz property.
منابع مشابه
Monomial Ideals, Edge Ideals of Hypergraphs, and Their Minimal Graded Free Resolutions
We use the correspondence between hypergraphs and their associated edge ideals to study the minimal graded free resolution of squarefree monomial ideals. The theme of this paper is to understand how the combinatorial structure of a hypergraph H appears within the resolution of its edge ideal I(H). We discuss when recursive formulas to compute the graded Betti numbers of I(H) in terms of its sub...
متن کاملMonomial ideals , edge ideals of hypergraphs , and their graded Betti numbers
We use the correspondence between hypergraphs and their associated edge ideals to study the minimal graded free resolution of squarefree monomial ideals. The theme of this paper is to understand how the combinatorial structure of a hypergraph H appears within the resolution of its edge ideal I(H). We discuss when recursive formulas to compute the graded Betti numbers of I(H) in terms of its sub...
متن کاملMinimal Graded Betti Numbers and Stable Ideals
Let k be a field, and let R = k[x1, x2, x3]. Given a Hilbert function H for a cyclic module over R, we give an algorithm to produce a stable ideal I such that R/I has Hilbert function H and uniquely minimal graded Betti numbers among all R/J with the same Hilbert function, where J is another stable ideal in R. We also show that such an algorithm is impossible in more variables and disprove a re...
متن کاملBetti strata of height two ideals
Let R = k[x, y] denote the polynomial ring in two variables over an infinite field k. We study the Betti strata of the family G(H) parametrizing graded Artinian quotients of R = k[x, y] having given Hilbert function H . The Betti stratum Gβ(H) parametrizes all quotients A of having the graded Betti numbers determined by H and the minimal relation degrees β, with βi = dimk Tor R 1 (I, k)i. We re...
متن کاملOn the First Infinitesimal Neighborhood of a Linear Configuration of Points in P
We consider the following open questions. Fix a Hilbert function h, that occurs for a reduced zero-dimensional subscheme of P. Among all subschemes, X, with Hilbert function h, what are the possible Hilbert functions and graded Betti numbers for the first infinitesimal neighborhood, Z, of X (i.e. the double point scheme supported on X)? Is there a minimum (h) and maximum (h) such function? The ...
متن کامل